
FAMU- FSU College of Engineering
Department of Electrical and Computer Engineering

Spring 2025

Ruth Massock Page 1 of 21

EEL-4742L Advanced Microprocessor

Based System Design Lab Report

Section No: 01

Lab Instructor: Angel Salges Valoz

Lab No: 10

Lab Title: Robot Navigation

Name: Ruth Massock

Partner’s Name: Keila Souriac

Date Performed: 04/08/2025

Date Delivered: 04/18/2025

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 2 of 21

Contents

EEL-4742L Advanced Microprocessor Based System Design Lab Report ... 1

1. Introduction ... 3

2. Design Requirements .. 3

3. Theoretical Design .. 3

4. Synthesized Design ... 8

5. Experimental Results .. 18

6. Summary ... 19

7. Lessons Learned .. 20

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 3 of 21

1. Introduction

In this lab, we were tasked with a project to implement a line-following

algorithm for the TI Robot Student Learning Kit MAX (TI-RSLK MAX)

to move in a maze. The goal was to develop a control system that enables

the robot to navigate a maze within a timeframe using input from bumper

switch to start the robot. This required processing sensor data, adjusting

motor speeds, and making real-time corrections to stay on course. At the

conclusion of this lab, we successfully programmed the TI-RSLK MAX to

follow a predefined path, applied modular coding techniques to improve

design efficiency, and analyzed how sensor reading impacts the robot’s

movement.

2. Design Requirements

The design implements a program in C using the MSP432 Driver Library

to control the TI-RSLK MAX robot, managing its movement and LED

indicators based on bumper switch inputs. The program controls the TI-

RSLK MAX robot, using sensors and LEDs to guide its behavior. Upon

startup, all LEDs briefly toggle, and the robot stays still and if a bumper

switch BS#3 is pressed. If the robot detects a line, LED1 stays and LED2

blinks, and it moves forward; if the line is lost, LED2 turns white. Pressing

any other bumper switch stops it, making it move backward briefly before

returning to standby. The LEDs change colors based on the robot’s actions,

providing clear feedback on its status and movements.

3. Theoretical Design

Top level Design:

The design starts TI-RSLK MAX robot, managing its movement and LED

indicators based on bumper switch inputs. The program controls the TI-

RSLK MAX robot, using sensors and LEDs to guide its behavior. Upon

startup, all LEDs briefly toggle, and the robot stays still and if a bumper

switch BS#3 is pressed. If the robot detects a line, LED1 stays and LED2

blinks, and it moves forward; if the line is lost, LED2 turns white. Pressing

any other bumper switch stops it, making it move backward briefly before

returning to standby. The LEDs change colors based on the robot’s actions,

providing clear feedback on its status and movements.

.

Pseudocode for code:
BEGIN

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 4 of 21

 DECLARE LED1State AS LED1OFF

DECLARE LED2State AS LED2OFF

DECLARE sensorCon AS OFF

DECLARE sensorNum, controlFlag AS 0

DECLARE leftcount, rightcount AS 0

DECLARE b0ButtonState AS buttonOFF

DECLARE PERIOD AS 60000

DECLARE DUTY AS 100

DECLARE CLOCKDIVIDER AS TIMER_A_CLOCKSOURCE_DIVIDER_48

DECLARE LEFTCHANNEL AS TIMER_A_CAPTURECOMPARE_REGISTER_4

DECLARE RIGHTCHANNEL AS TIMER_A_CAPTURECOMPARE_REGISTER_3

CALL config432IO()

CALL configRobotIO()

CALL configPWMTimer(PERIOD, CLOCKDIVIDER, DUTY, LEFTCHANNEL)

CALL configPWMTimer(PERIOD, CLOCKDIVIDER, DUTY, RIGHTCHANNEL)

CALL Timer_A_startCounter(TIMER_A0_BASE, TIMER_A_UP_MODE)

CALL toggleAll()

WHILE TRUE

 IF b0ButtonState == buttonON THEN

 CALL ReadLineSensor()

 CALL ProcessLineSensor()

 CALL LEDControl()

 CALL ControlRobot()

 ELSE

 CALL ReadLineSensor()

 CALL ProcessLineSensor()

 CALL LEDControl()

 CALL wheelsDirection(off, off)

 DELAY for 750000 cycles

 TOGGLE GPIO_PIN0 on Port P1

 DELAY for 750000 cycles

 END IF

END WHILE

FUNCTION config432IO

 CONFIGURE GPIO_PORT_P1_PIN0, GPIO_PORT_P2_PIN0,

GPIO_PORT_P2_PIN1, GPIO_PORT_P2_PIN2 as OUTPUT

 SET all MSP LEDs LOW

END FUNCTION

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 5 of 21

FUNCTION configRobotIO

 CONFIGURE bumper switches (GPIO_PORT_P4, pins 0,2,3,5,6,7) as INPUT with

PULL-UP RESISTORS and ENABLE INTERRUPTS

 CONFIGURE RSLK LEDs as OUTPUT and SET LOW

 CONFIGURE motor control pins as OUTPUT and SET LOW

END FUNCTION

FUNCTION LED2Tableii(LED2State)

 SWITCH LED2State

 CASE LED2OFF:

 TURN OFF all colors

 CASE RED:

 TURN ON Red LED, OFF Green and Blue

 CASE GREEN:

 TURN ON Green LED, OFF Red and Blue

 CASE BLUE:

 TURN ON Blue LED, OFF Red and Green

 CASE CYAN:

 TURN ON Green and Blue LEDs, OFF Red

 CASE YELLOW:

 TURN ON Red and Green LEDs, OFF Blue

 CASE WHITE:

 TURN ON all LEDs

 END SWITCH

END FUNCTION

FUNCTION toggleAll

 TURN ON all RSLK and MSP LEDs

 DELAY 2 seconds

 TURN OFF all RSLK and MSP LEDs

END FUNCTION

FUNCTION ReadLineSensor

 ACTIVATE IR LEDs

 SET line sensors to OUTPUT, HIGH

 DELAY briefly

 SET line sensors to INPUT

 DELAY briefly

 READ sensor pins into sensorNum

 DEACTIVATE IR LEDs

END FUNCTION

FUNCTION ProcessLineSensor

 COUNT how many LEFT and RIGHT sensors detect line

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 6 of 21

 SET sensorCon based on counts (ALL_LEFT, ONLYRIGHT, MORE_LEFT,

MORE_RIGHT, MIDDLE, OFF)

END FUNCTION

FUNCTION wheelsDirection(leftState, rightState)

 SET motor pins HIGH/LOW to achieve wheel direction (Forward, Reverse, off)

END FUNCTION

FUNCTION bumperSwitchHandler

 TOGGLE b0ButtonState between ON and OFF based on bumper interrupt

END FUNCTION

FUNCTION configPWMTimer(PERIOD, CLOCKDIVIDER, DUTY, CHANNEL)

 CONFIGURE PWM with given period, duty cycle, and clock divider

 ASSIGN PWM output to specified channel

END FUNCTION

FUNCTION LEDControl

 SET LED2 color based on sensorCon

 SET Red LED ON if sensorCon != OFF ELSE OFF

END FUNCTION

FUNCTION ControlRobot

 SWITCH sensorCon

 CASE ALL_LEFT:

 wheelsDirection(Reverse, Forward)

 CASE MORE_LEFT:

 wheelsDirection(off, Forward)

 CASE MIDDLE:

 wheelsDirection(Forward, Forward)

 CASE MORE_RIGHT:

 wheelsDirection(Forward, off)

 CASE ONLYRIGHT:

 wheelsDirection(Forward, Reverse)

 DEFAULT:

 wheelsDirection(off, off)

 END SWITCH

END FUNCTION

Functional description of modules:

1. config432IO: This function configures the I/O pins of Port 1 and Port 2 on

the MSP430 microcontroller. It sets the appropriate pins (GPIO_PIN0,

GPIO_PIN1, and GPIO_PIN2) as outputs for controlling LEDs. The function

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 7 of 21

also ensures that all LEDs are initially set to a low state, effectively turning

them off.

2. configRobotIO: This function configures the input and output I/O pins for

the robot's bumper switches, motor connections, and LEDs. The bumper

switch pins are set as input with pull-up resistors, while the RSLK LEDs and

motor PWM pins are set as outputs. It ensures the robot’s hardware

components are properly set up for control during operation.

3. LED2Tableii: This function controls the state of the second LED (LED2)

on the robot, which can be set to various colors. It accepts an input state

(LED2State) and switches the LED to one of the predefined color states such

as OFF, RED, GREEN, BLUE, CYAN, YELLOW, or WHITE. It uses GPIO

pins to turn on or off the corresponding LEDs to display the desired color.

4. toggleAll: This function toggles the state of all LEDs on the robot. It turns

on both the RSLK and MSP LEDs for a specified duration (2 seconds) and

then turns them off. This function serves as a visual indicator or diagnostic

tool to check the status of the system.

5. ReadLineSensor: This function reads the values from the line sensors used

by the robot to detect the surface or path it is following. The data collected

from the sensors are essential for determining the robot’s behavior, such as

following a line or avoiding obstacles.

6. ProcessLineSensor: This function processes the data from the line sensors.

It interprets the sensor values to determine whether the robot is on track or

needs to make adjustments to its path. The processing logic may involve

determining if the robot should turn left, right, or continue moving forward

based on the sensor readings.

7. wheelsDirection: This function controls the direction of the robot’s wheels

based on input parameters for the left and right wheels. It sets the states of the

motor driver pins to drive the wheels in the appropriate direction, such as

forward, reverse, or stop. The function is essential for maneuvering the robot.

8. bumperSwitchHandler: This function handles the event when the bumper

switch is pressed. The bumper switch serves as a collision detection

mechanism, and when triggered, this function takes the necessary action, such

as stopping the robot or performing a turn to avoid obstacles.

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 8 of 21

9. configPWMTimer: The configPWMTimer function configures Timer A

on the MSP430 microcontroller to generate a Pulse Width Modulation (PWM)

signal. It sets the period of the PWM and assigns the correct duty cycle, clock

divider, and channel. The function ensures the correct timer settings to control

motor speed and wheel rotation.

10. LEDControl: This function manages the LED display based on sensor

data. Depending on the status of the sensors (e.g., whether the robot is on the

correct line or not), the function updates the color or state of the LEDs to

provide visual feedback to the user. It helps in providing status updates or

indicating errors or warnings.

11. ControlRobot: This function manages the robot's navigation based on

processed sensor data. Depending on the robot's detected position relative to

the intended path, it adjusts motor directions to move forward, reverse, or

turn. This function ensures the robot accurately follows its intended path,

quickly adapts to sensor feedback, and handles navigation efficiently.

4. Synthesized Design

C code:

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 9 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 10 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 11 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 12 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 13 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 14 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 15 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 16 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 17 of 21

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 18 of 21

5. Experimental Results

At power-up, all LEDS toggled once for approximately 2 seconds, and the

motors remained OFF, confirming the successful execution of Power-Up

Mode. After initialization, the system entered Stand-By Mode, where

REDLED1 toggled at a frequency of approximately 0.5 Hz, and the robot

remained stationary. Pressing and releasing Bumper Switch 0 (BS#0)

triggered the robot to begin navigating the maze, with the front LED

turning ON to indicate forward motion.

As the robot proceeded through the maze, it continuously read values from

the eight-line IR sensor array to determine its position relative to the path.

The robot made smooth corrections using PWM motor control and entered

reverse-spin recovery mode when it lost track of the line. The system used

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 19 of 21

front and rear LEDs to indicate direction—turning the front LED ON

during forward motion and the rear LED ON when reversing, as per the

design specifications.

During final testing, the robot successfully completed the entire maze in 51

seconds, demonstrating precise navigation and timely response to track

variations. The system returned to Stand-By Mode after task completion,

and all LEDs and motor responses aligned with the expected behaviors.

Thorough testing confirmed that the robot met all functional requirements,

including accurate line detection, responsive movement, and proper visual

feedback using onboard LEDs.

Certification Test Sheet

6. Summary

This project focused on programming the TI-RSLK MAX robot to

autonomously navigate a predefined maze using data from its onboard

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 20 of 21

infrared line sensors. The primary objectives were to develop a responsive

navigation algorithm, manage motor control based on sensor feedback, and

implement visual LED indicators for motion status. Throughout testing, the

robot reliably interpreted sensor data to follow lines, corrected its path

during deviations, and executed a reverse-spin routine when the path was

lost. The experimental results demonstrated that the robot could

consistently traverse most of the maze, ultimately completing the maze in

51 seconds during the final run. This lab reinforced the importance of

precise sensor calibration, robust control logic, and recovery strategies in

embedded systems for real-time robotic navigation.

• Tests Passed: 7

• Tests Failed: 0

• Percentage Passed: 100%

i. Did you change your algorithm from week 1 to week 2? No, we Had

the same algorithm. In Week 1, the robot frequently lost the line and did

not recover effectively. In Week 2, we added a longer timeout for line loss,

a reverse-spin recovery mechanism, and adjusted the weights for center

sensors to improve stability and turning.

7. Lessons Learned

i. If your design successfully navigated the maze, would you make any

changes if you had to do the lab again?

Yes. While the robot nearly completed the maze, there were still areas for

improvement. We would enhance PWM control to smooth motor transitions,

apply a more adaptive line loss timeout based on speed, and explore using

additional sensors (like ultrasonic) for obstacle proximity.

ii. If your design was not successful navigating the maze, why do you

think it went wrong and what changes would you make if you had to do

the lab again?

N/A – The design was mostly successful, but earlier implementation of the

recovery strategy and better tuning of ADC thresholds could have further

improved reliability.

• Effective sensor data processing: Learned efficient methods to interpret

sensor signals and reliably detect robot positions and surroundings.

• PWM motor control: Gained practical experience with precise motor

speed and direction control using PWM signals.

EEL-4742L Microcontroller Based Systems Design Laboratory

Report

Ruth Massock Page 21 of 21

• Efficient robot navigation logic: Developed strategies for responsive

robot maneuvering and quick adaptation to sensor feedback.

Through this experiment, I learned the importance of timing and sensor

management. The introduction of time delays to ensure the readings are

stable and accurate. I also realized how critical it is to control when the

LEDs are on or off to prevent interference during sensor reading.

